Enhancing Wheel Vertical Displacement Estimation in Road Vehicles Through Integration of Model-Based Estimator With Artificial Intelligence
In the automotive industry, the accurate estimation of wheel displacements is crucial for optimizing vehicle suspension systems. Traditional model-based approaches often face challenges in accurately predicting these displacements due to the complex dynamics of the road-vehicle interaction. To addre...
Saved in:
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IEEE
2024-01-01
|
Series: | IEEE Open Journal of Vehicular Technology |
Subjects: | |
Online Access: | https://ieeexplore.ieee.org/document/10605031/ |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In the automotive industry, the accurate estimation of wheel displacements is crucial for optimizing vehicle suspension systems. Traditional model-based approaches often face challenges in accurately predicting these displacements due to the complex dynamics of the road-vehicle interaction. To address this limitation, this study, conducted in the frame of the OWHEEL project, proposes the integration of a multi-output neural network capable of compensating for estimation errors inherent in model-based approaches, specifically those arising from road inputs. Leveraging only vertical acceleration measurements, the neural network operates in parallel with the model-based estimator, enhancing the overall accuracy of displacement estimation. Experimental validation using a sports vehicle demonstrates the efficacy of the proposed methodology, showcasing its ability to improve estimation accuracy beyond the capabilities of the model-based approach alone. |
---|---|
ISSN: | 2644-1330 |