Exosomes in Human Immunodeficiency Virus Type I Pathogenesis: Threat or Opportunity?

Nanometre-sized vesicles, also known as exosomes, are derived from endosomes of diverse cell types and present in multiple biological fluids. Depending on their cellular origins, the membrane-bound exosomes packed a variety of functional proteins and RNA species. These microvesicles are secreted int...

Full description

Saved in:
Bibliographic Details
Main Authors: Sin-Yeang Teow, Alif Che Nordin, Syed A. Ali, Alan Soo-Beng Khoo
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Advances in Virology
Online Access:http://dx.doi.org/10.1155/2016/9852494
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanometre-sized vesicles, also known as exosomes, are derived from endosomes of diverse cell types and present in multiple biological fluids. Depending on their cellular origins, the membrane-bound exosomes packed a variety of functional proteins and RNA species. These microvesicles are secreted into the extracellular space to facilitate intercellular communication. Collective findings demonstrated that exosomes from HIV-infected subjects share many commonalities with Human Immunodeficiency Virus Type I (HIV-1) particles in terms of proteomics and lipid profiles. These observations postulated that HIV-resembled exosomes may contribute to HIV pathogenesis. Interestingly, recent reports illustrated that exosomes from body fluids could inhibit HIV infection, which then bring up a new paradigm for HIV/AIDS therapy. Accumulative findings suggested that the cellular origin of exosomes may define their effects towards HIV-1. This review summarizes the two distinctive roles of exosomes in regulating HIV pathogenesis. We also highlighted several additional factors that govern the exosomal functions. Deeper understanding on how exosomes promote or abate HIV infection can significantly contribute to the development of new and potent antiviral therapeutic strategy and vaccine designs.
ISSN:1687-8639
1687-8647