Web Real-Time Communications-Based Unmanned-Aerial-Vehicle-Borne Internet of Things and Stringent Time Sensitivity: A Case Study
The currently observed development of time-sensitive applications also affects wireless communication with the IoT carried by UAVs. Although research on wireless low-latency networks has matured, there are still issues to solve at the transport layer. Since there is a general agreement that classica...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/25/2/524 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The currently observed development of time-sensitive applications also affects wireless communication with the IoT carried by UAVs. Although research on wireless low-latency networks has matured, there are still issues to solve at the transport layer. Since there is a general agreement that classical transport solutions are not able to achieve end-to-end delays in the single-digit millisecond range, in this paper, the use of WebRTC is proposed as a potential solution to this problem. This article examines UAV-borne WebRTC-based IoT in an outdoor environment. The results of field experiments conducted under various network conditions show that, in highly reliable networks, UAV and WebRTC-based IoT achieved stable end-to-end delays well below 10 ms during error-free air-to-ground transmissions, and below 10 ms in the immediate vicinity of the retransmitted packet. The significant advantage of the WebRTC data channel over the classic WebSocket is also demonstrated. |
---|---|
ISSN: | 1424-8220 |