Supervised machine learning algorithms for the classification of obesity levels using anthropometric indices derived from bioelectrical impedance analysis

Abstract The accurate classification of obesity is essential for public health and clinical decision-making. Traditional anthropometric measures such as body mass index (BMI) have limitations in differentiating between fat and lean mass. This study aimed to evaluate and compare the performance of va...

Full description

Saved in:
Bibliographic Details
Main Authors: Rodrigo Yáñez-Sepúlveda, Aldo Vásquez-Bonilla, Rodrigo Olivares, Pablo Olivares, Juan Pablo Zavala-Crichton, Claudio Hinojosa-Torres, Catalina Muñoz-Strale, Frano Giakoni-Ramírez, Josivaldo de Souza-Lima, Jacqueline Páez-Herrera, Jorge Olivares-Arancibia, Tomás Reyes-Amigo, Guillermo Cortés-Roco, Juan Hurtado-Almonacid, Eduardo Guzmán-Muñoz, Nicole Aguilera-Martínez, José Francisco López-Gil, Boryi A. Becerra-Patiño, Juan David Paucar-Uribe, Exal Garcia-Carrillo, Vicente Javier Clemente-Suárez
Format: Article
Language:English
Published: Nature Portfolio 2025-08-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-15264-6
Tags: Add Tag
No Tags, Be the first to tag this record!