Using magnetic dynamics to measure the spin gap in a candidate Kitaev material

Abstract Spin-orbit entangled materials have attracted widespread interest due to the novel magnetic phenomena arising from the interplay between spin-orbit coupling and electronic correlations. However, the intricate nature of spin interactions within Kiteav materials complicates the precise measur...

Full description

Saved in:
Bibliographic Details
Main Authors: Xinyi Jiang, Qingzheng Qiu, Cheng Peng, Hoyoung Jang, Wenjie Chen, Xianghong Jin, Li Yue, Byungjune Lee, Sang-Youn Park, Minseok Kim, Hyeong-Do Kim, Xinqiang Cai, Qizhi Li, Tao Dong, Nanlin Wang, Joshua J. Turner, Yuan Li, Yao Wang, Yingying Peng
Format: Article
Language:English
Published: Nature Portfolio 2025-02-01
Series:npj Quantum Materials
Online Access:https://doi.org/10.1038/s41535-025-00737-8
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Spin-orbit entangled materials have attracted widespread interest due to the novel magnetic phenomena arising from the interplay between spin-orbit coupling and electronic correlations. However, the intricate nature of spin interactions within Kiteav materials complicates the precise measurement of low-energy spin excitations. Using Na2Co2TeO6 as an example, we study these low-energy spin excitations using the time-resolved resonant elastic x-ray scattering (tr-REXS). Our observations unveil remarkably slow spin dynamics at the magnetic peak, whose recovery timescale is several nanoseconds. This timescale aligns with the extrapolated spin gap of ~1 μeV, obtained by density matrix renormalization group (DMRG) simulations in the thermodynamic limit. The consistency demonstrates the efficacy of tr-REXS in discerning low-energy spin gaps inaccessible to conventional spectroscopic techniques.
ISSN:2397-4648