Optimization of Recombination Layer in the Tunnel Junction of Amorphous Silicon Thin-Film Tandem Solar Cells
The amorphous silicon/amorphous silicon (a-Si/a-Si) tandem solar cells have attracted much attention in recent years, due to the high efficiency and low manufacturing cost compared to the single-junction a-Si solar cells. In this paper, the tandem cells are fabricated by high-frequency plasma-enhanc...
Saved in:
| Main Authors: | , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2011-01-01
|
| Series: | International Journal of Photoenergy |
| Online Access: | http://dx.doi.org/10.1155/2011/264709 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The amorphous silicon/amorphous silicon (a-Si/a-Si) tandem solar cells have attracted much attention in recent years, due to the high efficiency and low manufacturing cost compared to the single-junction a-Si solar cells. In this paper, the tandem cells are fabricated by high-frequency plasma-enhanced chemical vapor deposition (HF-PECVD) at 27.1 MHz. The effects of the recombination layer and the i-layer thickness matching on the cell performance have been investigated. The results show that the tandem cell with a p+ recombination layer and i2/i1 thickness ratio of 6 exhibits a maximum efficiency of 9.0% with the open-circuit voltage (Voc) of 1.59 V, short-circuit current density (Jsc) of 7.96 mA/cm2, and a fill factor (FF) of 0.70. After light-soaking test, our a-Si/a-Si tandem cell with p+ recombination layer shows the excellent stability and the stabilized efficiency of 8.7%. |
|---|---|
| ISSN: | 1110-662X 1687-529X |