Analysis of the Application of Cryptophane-A\-E in a Mass-Sensing Methane Gas Sensor: Insights from a Numerical Simulation

Supramolecular compounds are capable of encapsulating small molecules to form host–guest compounds, which can be combined with sound surface wave technology to achieve high-precision detection of specific gases. In this paper, we analyzed the adsorption ability of Cryptophane-A and Cryptophane-E, th...

Full description

Saved in:
Bibliographic Details
Main Authors: Xinlei Liu, Dan Xiao, Qinglan Zhang, Yu Guan, Bin Shen, Jiazhe Li
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Chemosensors
Subjects:
Online Access:https://www.mdpi.com/2227-9040/13/5/179
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Supramolecular compounds are capable of encapsulating small molecules to form host–guest compounds, which can be combined with sound surface wave technology to achieve high-precision detection of specific gases. In this paper, we analyzed the adsorption ability of Cryptophane-A and Cryptophane-E, the caged supramolecular materials, at room temperature by numerical simulation using first principles. The geometrical optimization of Cryptophane-A, Cryptophane-E, and gas molecules was carried out by the Dmol<sup>3</sup> module in Materials Studio. Through adsorption calculation of gas molecules, the change of density of states and the magnitude of adsorption energy of Cryptophane-A and E were compared and analyzed. The results show that Cryptophane-A and E are van der Waals adsorption for molecules in gas (except CO<sub>2</sub> and C<sub>2</sub>H<sub>6</sub>). The adsorption energy of Cryptophane-A is lower than that of Cryptophane-E, but it is more selective and has preferential adsorption for methane. In this paper, we also tried to calculate the adsorption of Cryptophane-A and E on two methane molecules. The result showed that the former could adsorb two methane molecules, but the adsorption energy was lower than that of one methane molecule; the latter could not adsorb two methane molecules stably. The study shows that Cryptophane-A is more suitable as a sensitive material for CH<sub>4</sub> detection, which provides support for the development of acoustic surface wave methane detection technology.
ISSN:2227-9040