Prescribed Performance Neural Control of Strict-Feedback Systems via Disturbance Observers
This paper provides a disturbance observer-based prescribed performance control method for uncertain strict-feedback systems. To guarantee that the tracking error meets a design prescribed performance boundary (PPB) condition, an improved prescribed performance function is introduced. And radial bas...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2020/8835512 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper provides a disturbance observer-based prescribed performance control method for uncertain strict-feedback systems. To guarantee that the tracking error meets a design prescribed performance boundary (PPB) condition, an improved prescribed performance function is introduced. And radial basis function neural networks (RBFNNs) are used to approximate nonlinear functions, while second-order filters are employed to eliminate the “explosion-complexity” problem inherent in the existing method. Meanwhile, disturbance observers are constructed to estimate the compounded disturbance which includes time-varying disturbances and network construction errors. The stability of the whole closed-loop system is guaranteed via Lyapunov theory. Finally, comparative simulation results confirm that the proposed control method can achieve better tracking performance. |
---|---|
ISSN: | 1076-2787 1099-0526 |