A Smart Privacy-Preserving Learning Method by Fake Gradients to Protect Users Items in Recommender Systems
In this paper, we study the problem of protecting privacy in recommender systems. We focus on protecting the items rated by users and propose a novel privacy-preserving matrix factorization algorithm. In our algorithm, the user will submit a fake gradient to make the central server not able to disti...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2020/6683834 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|