Adaptive Fuzzy Fault-Tolerant Output Feedback Tracking Control of Uncertain Stochastic Nonlinear Systems with Unknown Time-Delay and Tracking Error Constrained

The problem of tracking error constrained adaptive fuzzy output feedback control is investigated for a class of single-input and single-output (SISO) stochastic nonlinear systems with actuator faults, unknown time-delay, and unmeasured states. The considered faults are modeled as both loss of effect...

Full description

Saved in:
Bibliographic Details
Main Authors: Shuai Sui, Shaocheng Tong, Yongming Li
Format: Article
Language:English
Published: Wiley 2014-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2014/703609
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The problem of tracking error constrained adaptive fuzzy output feedback control is investigated for a class of single-input and single-output (SISO) stochastic nonlinear systems with actuator faults, unknown time-delay, and unmeasured states. The considered faults are modeled as both loss of effectiveness and lock-in-place. The fuzzy logic systems are used to approximate the unknown nonlinear functions, and a fuzzy adaptive observer is designed for estimating the unmeasured states. By transforming the tracking errors into new virtual error variables and based on backstepping recursive design technique, a new fuzzy adaptive output feedback control method is developed. It is shown that all the signals of the resulting closed-loop system are bounded in probability and the tracking error remains an adjustable neighborhood of the origin within the prescribed bounds. The simulation results are provided to show the effectiveness of the proposed approach.
ISSN:1110-757X
1687-0042