Application of Genomic Selection in Beef Cattle Disease Prevention

Genomic applications in beef cattle disease prevention have gained traction in recent years, offering new strategies for improving herd health and reducing economic losses in the livestock industry. Advances in genomics, including identification of genetic markers linked to disease resistance, provi...

Full description

Saved in:
Bibliographic Details
Main Authors: Ramanathan Kasimanickam, Joao Carlos Pinheiro Ferreira, John Kastelic, Vanmathy Kasimanickam
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Animals
Subjects:
Online Access:https://www.mdpi.com/2076-2615/15/2/277
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Genomic applications in beef cattle disease prevention have gained traction in recent years, offering new strategies for improving herd health and reducing economic losses in the livestock industry. Advances in genomics, including identification of genetic markers linked to disease resistance, provide powerful tools for early detection, selection, and management of cattle resistant to infectious diseases. By incorporating genomic technologies such as whole-genome sequencing, genotyping, and transcriptomics, researchers can identify specific genetic variants associated with resistance to pathogens like bovine respiratory disease and Johne’s disease. These genomic insights allow for more accurate breeding programs aimed at enhancing disease resistance and overall herd resilience. Genomic selection, in particular, enables identification of individuals with superior genetic traits for immune function, reducing the need for antibiotic treatments and improving animal welfare. Moreover, precision medicine, powered by genomic data, supports development of tailored health management strategies, including targeted vaccination plans and antimicrobial stewardship. Incorporation of genomic tools in beef cattle management also offers the potential for early disease detection, facilitating proactive interventions that reduce the spread of infections. Despite challenges like cost, data interpretation and integration into current management systems, the potential advantages of genomic applications in disease prevention are substantial. As these technologies advance, they are anticipated to have crucial roles in improving sustainability (by enhancing herd performance), profitability (by improving overall herd longevity), and biosecurity (by decreasing the likelihood of disease outbreaks) of beef cattle production systems worldwide.
ISSN:2076-2615