Predicting drug and target interaction with dilated reparameterize convolution
Abstract Predicting drug-target interaction (DTI) stands as a pivotal and formidable challenge in pharmaceutical research. Many existing deep learning methods only learn the high-dimensional representation of ligands and targets on a small scale. However, it is difficult for the model to obtain the...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Nature Portfolio
2025-01-01
|
Series: | Scientific Reports |
Subjects: | |
Online Access: | https://doi.org/10.1038/s41598-025-86918-8 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract Predicting drug-target interaction (DTI) stands as a pivotal and formidable challenge in pharmaceutical research. Many existing deep learning methods only learn the high-dimensional representation of ligands and targets on a small scale. However, it is difficult for the model to obtain the potential law of combining pockets or multiple binding sites on a large scale. To address this lacuna, we designed a large-kernel convolutional block for extracting large-scale sequence information and proposed a novel DTI prediction framework, named Rep-ConvDTI. The reparameterization method is introduced to help large-kernel convolutions capture small-scale information. We have also developed a gated attention mechanism to more efficiently characterize the interaction of drugs and targets. Extensive experiments demonstrate that Rep-ConvDTI achieves the most competitive performance against state-of-the-art baselines on the three benchmark datasets. Furthermore, we validated the potential of Rep-ConvDTI as a drug screening tool through model interpretative studies and drug screening experiments with cystathionine-β-synthase. |
---|---|
ISSN: | 2045-2322 |