Generalized Lebesgue Points for Hajłasz Functions

Let X be a quasi-Banach function space over a doubling metric measure space P. Denote by αX the generalized upper Boyd index of X. We show that if αX<∞ and X has absolutely continuous quasinorm, then quasievery point is a generalized Lebesgue point of a quasicontinuous Hajłasz function u∈M˙s,X. M...

Full description

Saved in:
Bibliographic Details
Main Author: Toni Heikkinen
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2018/5637042
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832549574623887360
author Toni Heikkinen
author_facet Toni Heikkinen
author_sort Toni Heikkinen
collection DOAJ
description Let X be a quasi-Banach function space over a doubling metric measure space P. Denote by αX the generalized upper Boyd index of X. We show that if αX<∞ and X has absolutely continuous quasinorm, then quasievery point is a generalized Lebesgue point of a quasicontinuous Hajłasz function u∈M˙s,X. Moreover, if αX<(Q+s)/Q, then quasievery point is a Lebesgue point of u. As an application we obtain Lebesgue type theorems for Lorentz–Hajłasz, Orlicz–Hajłasz, and variable exponent Hajłasz functions.
format Article
id doaj-art-4f421a16aad447a7af9b18375a53ed8c
institution Kabale University
issn 2314-8896
2314-8888
language English
publishDate 2018-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-4f421a16aad447a7af9b18375a53ed8c2025-02-03T06:11:01ZengWileyJournal of Function Spaces2314-88962314-88882018-01-01201810.1155/2018/56370425637042Generalized Lebesgue Points for Hajłasz FunctionsToni Heikkinen0Department of Mathematics, Aalto University, P.O. Box 11100, 00076 Aalto, FinlandLet X be a quasi-Banach function space over a doubling metric measure space P. Denote by αX the generalized upper Boyd index of X. We show that if αX<∞ and X has absolutely continuous quasinorm, then quasievery point is a generalized Lebesgue point of a quasicontinuous Hajłasz function u∈M˙s,X. Moreover, if αX<(Q+s)/Q, then quasievery point is a Lebesgue point of u. As an application we obtain Lebesgue type theorems for Lorentz–Hajłasz, Orlicz–Hajłasz, and variable exponent Hajłasz functions.http://dx.doi.org/10.1155/2018/5637042
spellingShingle Toni Heikkinen
Generalized Lebesgue Points for Hajłasz Functions
Journal of Function Spaces
title Generalized Lebesgue Points for Hajłasz Functions
title_full Generalized Lebesgue Points for Hajłasz Functions
title_fullStr Generalized Lebesgue Points for Hajłasz Functions
title_full_unstemmed Generalized Lebesgue Points for Hajłasz Functions
title_short Generalized Lebesgue Points for Hajłasz Functions
title_sort generalized lebesgue points for hajlasz functions
url http://dx.doi.org/10.1155/2018/5637042
work_keys_str_mv AT toniheikkinen generalizedlebesguepointsforhajłaszfunctions