Harnessing Metacognition for Safe and Responsible AI
The rapid advancement of artificial intelligence (AI) technologies has transformed various sectors, significantly enhancing processes and augmenting human capabilities. However, these advancements have also introduced critical concerns related to the safety, ethics, and responsibility of AI systems....
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Technologies |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7080/13/3/107 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The rapid advancement of artificial intelligence (AI) technologies has transformed various sectors, significantly enhancing processes and augmenting human capabilities. However, these advancements have also introduced critical concerns related to the safety, ethics, and responsibility of AI systems. To address these challenges, the principles of the robustness, interpretability, controllability, and ethical alignment framework are essential. This paper explores the integration of metacognition—defined as “thinking about thinking”—into AI systems as a promising approach to meeting these requirements. Metacognition enables AI systems to monitor, control, and regulate the system’s cognitive processes, thereby enhancing their ability to self-assess, correct errors, and adapt to changing environments. By embedding metacognitive processes within AI, this paper proposes a framework that enhances the transparency, accountability, and adaptability of AI systems, fostering trust and mitigating risks associated with autonomous decision-making. Additionally, the paper examines the current state of AI safety and responsibility, discusses the applicability of metacognition to AI, and outlines a mathematical framework for incorporating metacognitive strategies into active learning processes. The findings aim to contribute to the development of safe, responsible, and ethically aligned AI systems. |
|---|---|
| ISSN: | 2227-7080 |