A Bis-Glycosylamine Strategy for the Synthesis of Dimeric Iminosugars Based on a DAB-1 Scaffold
A straightforward synthetic route towards DAB-1 scaffolded dimeric iminosugars is described here, starting from readily available bis-glycosylamines. The method allows the integration of a variety of linkages (aryl, alkyl, polyethyleneglycol chains) between both iminosugars through the choice of the...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Molecules |
Subjects: | |
Online Access: | https://www.mdpi.com/1420-3049/30/2/226 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A straightforward synthetic route towards DAB-1 scaffolded dimeric iminosugars is described here, starting from readily available bis-glycosylamines. The method allows the integration of a variety of linkages (aryl, alkyl, polyethyleneglycol chains) between both iminosugars through the choice of the bis-amine used in the first step. Moreover, an additional substituent (allyl, ethynyl) may be inserted into the structure via nucleophilic addition of an organometallic reagent to the starting bis-glycosylamine. A symmetrical ethynyl-iminosugar proved susceptible to intramolecular Glaser coupling, affording the corresponding macrocyclic structure. Dimeric iminosugars were tested towards a series of commercial glycosidases to uncover potencies and selectivities when compared to DAB-1, their monomeric counterpart. Whereas a significant drop in inhibition potencies was observed towards glucosidases, some compounds displayed unexpected potent inhibition of β-galactosidase. |
---|---|
ISSN: | 1420-3049 |