Research on Iterative Learning Method for Lower Limb Exoskeleton Rehabilitation Robot Based on RBF Neural Network

This study addresses gait reference trajectory tracking control in a 13-degree-of-freedom lower-limb rehabilitation robot, where patients exhibit nonlinear perturbations in lower-limb muscle groups and gait irregularities during exoskeleton-assisted walking. We propose a novel control strategy integ...

Full description

Saved in:
Bibliographic Details
Main Authors: Jing Li, Huimin Jiang, Moyao Gao, Shuang Li, Zhanli Wang, Zaixiang Pang, Yang Zhang, Yang Jiao
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/11/6053
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study addresses gait reference trajectory tracking control in a 13-degree-of-freedom lower-limb rehabilitation robot, where patients exhibit nonlinear perturbations in lower-limb muscle groups and gait irregularities during exoskeleton-assisted walking. We propose a novel control strategy integrating iterative learning with RBF neural network-based sliding mode control, featuring a single hidden-layer pre-feedback architecture. The RBF neural network effectively approximates uncertainties arising from lower-limb muscle perturbations, while adaptive regulation through parameter simplification ensures precise torque tracking at each joint, meeting real-time rehabilitation requirements. MATLAB 2021 simulations demonstrate the proposed algorithm’s superior trajectory tracking performance compared to conventional sliding mode control, effectively eliminating control chattering. Experimental results show maximum angular errors of 1.77° (hip flexion/extension), 1.87° (knee flexion/extension), and 0.72° (ankle dorsiflexion/plantarflexion). The integrated motion capture system enables the development of patient-specific skeletal muscle models and optimized gait trajectories, ensuring both training efficacy and safety for spasticity patients.
ISSN:2076-3417