Global Asymptotic Stability of a Family of Nonlinear Difference Equations

In this note, we consider global asymptotic stability of the following nonlinear difference equation xn=(∏i=1v(xn-kiβi+1)+∏i=1v(xn-kiβi-1))/(∏i=1v(xn-kiβi+1)-∏i=1v(xn-kiβi-1)),  n=0,1,…, where ki∈ℕ  (i=1,2,…,v),  v≥2, β1∈[-1,1], β2,β3,…,βv∈(-∞,+∞), x-m,x-m+1,…,x-1∈(0,∞), and m=max1≤i≤v{ki}. Our resu...

Full description

Saved in:
Bibliographic Details
Main Author: Maoxin Liao
Format: Article
Language:English
Published: Wiley 2013-01-01
Series:Discrete Dynamics in Nature and Society
Online Access:http://dx.doi.org/10.1155/2013/750852
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832552352618381312
author Maoxin Liao
author_facet Maoxin Liao
author_sort Maoxin Liao
collection DOAJ
description In this note, we consider global asymptotic stability of the following nonlinear difference equation xn=(∏i=1v(xn-kiβi+1)+∏i=1v(xn-kiβi-1))/(∏i=1v(xn-kiβi+1)-∏i=1v(xn-kiβi-1)),  n=0,1,…, where ki∈ℕ  (i=1,2,…,v),  v≥2, β1∈[-1,1], β2,β3,…,βv∈(-∞,+∞), x-m,x-m+1,…,x-1∈(0,∞), and m=max1≤i≤v{ki}. Our result generalizes the corresponding results in the recent literature and simultaneously conforms to a conjecture in the work by Berenhaut et al. (2007).
format Article
id doaj-art-4baccc8925554e55b7cc75d73119a97b
institution Kabale University
issn 1026-0226
1607-887X
language English
publishDate 2013-01-01
publisher Wiley
record_format Article
series Discrete Dynamics in Nature and Society
spelling doaj-art-4baccc8925554e55b7cc75d73119a97b2025-02-03T05:58:48ZengWileyDiscrete Dynamics in Nature and Society1026-02261607-887X2013-01-01201310.1155/2013/750852750852Global Asymptotic Stability of a Family of Nonlinear Difference EquationsMaoxin Liao0School of Mathematics and Physics, University of South China, Hengyang, Hunan 421001, ChinaIn this note, we consider global asymptotic stability of the following nonlinear difference equation xn=(∏i=1v(xn-kiβi+1)+∏i=1v(xn-kiβi-1))/(∏i=1v(xn-kiβi+1)-∏i=1v(xn-kiβi-1)),  n=0,1,…, where ki∈ℕ  (i=1,2,…,v),  v≥2, β1∈[-1,1], β2,β3,…,βv∈(-∞,+∞), x-m,x-m+1,…,x-1∈(0,∞), and m=max1≤i≤v{ki}. Our result generalizes the corresponding results in the recent literature and simultaneously conforms to a conjecture in the work by Berenhaut et al. (2007).http://dx.doi.org/10.1155/2013/750852
spellingShingle Maoxin Liao
Global Asymptotic Stability of a Family of Nonlinear Difference Equations
Discrete Dynamics in Nature and Society
title Global Asymptotic Stability of a Family of Nonlinear Difference Equations
title_full Global Asymptotic Stability of a Family of Nonlinear Difference Equations
title_fullStr Global Asymptotic Stability of a Family of Nonlinear Difference Equations
title_full_unstemmed Global Asymptotic Stability of a Family of Nonlinear Difference Equations
title_short Global Asymptotic Stability of a Family of Nonlinear Difference Equations
title_sort global asymptotic stability of a family of nonlinear difference equations
url http://dx.doi.org/10.1155/2013/750852
work_keys_str_mv AT maoxinliao globalasymptoticstabilityofafamilyofnonlineardifferenceequations