Detecting label noise in longitudinal Alzheimer’s data with explainable artificial intelligence
Abstract Reliable classification of cognitive states in longitudinal Alzheimer’s Disease (AD) studies is critical for early diagnosis and intervention. However, inconsistencies in diagnostic labeling, arising from subjective assessments, evolving clinical criteria, and measurement variability, intro...
Saved in:
| Main Authors: | , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
SpringerOpen
2025-06-01
|
| Series: | Brain Informatics |
| Subjects: | |
| Online Access: | https://doi.org/10.1186/s40708-025-00261-2 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|