A Numerical Comparison for a Discrete HIV Infection of CD4+ T-Cell Model Derived from Nonstandard Numerical Scheme
A nonstandard numerical scheme has been constructed and analyzed for a mathematical model that describes HIV infection of CD4+ T cells. This new discrete system has the same stability properties as the continuous model and, particularly, it preserves the same local asymptotic stability properties. L...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2013-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2013/375094 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A nonstandard numerical scheme has been constructed and analyzed for a mathematical model that describes HIV infection of CD4+ T cells. This new discrete system has the same stability properties as the continuous model and, particularly, it preserves the same local asymptotic stability properties. Linearized Stability Theory and Schur-Cohn criteria are used for local asymptotic stability of this discrete time model. This proposed nonstandard numerical scheme is compared with the classical explicit Euler and fourth order Runge-Kutta methods. To show the efficiency of this numerical scheme, the simulated results are given in tables and figures. |
---|---|
ISSN: | 1110-757X 1687-0042 |