A New Robust Classifier on Noise Domains: Bagging of Credal C4.5 Trees
The knowledge extraction from data with noise or outliers is a complex problem in the data mining area. Normally, it is not easy to eliminate those problematic instances. To obtain information from this type of data, robust classifiers are the best option to use. One of them is the application of ba...
Saved in:
Main Authors: | Joaquín Abellán, Javier G. Castellano, Carlos J. Mantas |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2017-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2017/9023970 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Peningkatan Akurasi Klasifikasi Algoritma C 4.5 Menggunakan Teknik Bagging pada Diagnosis Penyakit Jantung
by: Erwin Prasetyo, et al.
Published: (2020-10-01) -
Pengaruh Prediksi Missing Value pada Klasifikasi Decision Tree C4.5
by: Aji Seto Arifianto, et al.
Published: (2022-08-01) -
“In the Bag”
by: Alison Goeller
Published: (2010-02-01) -
Robust Framework to Combine Diverse Classifiers Assigning Distributed Confidence to Individual Classifiers at Class Level
by: Shehzad Khalid, et al.
Published: (2014-01-01) -
Model Prognosis Masa Pengobatan Pasien Tuberkulosis Dengan Metode C4.5
by: Rusdah Rusdah, et al.
Published: (2023-12-01)