Adaptive Complex-Valued Independent Component Analysis Based on Second-Order Statistics
This paper proposes a two-stage fast convergence adaptive complex-valued independent component analysis based on second-order statistics of complex-valued source signals. The first stage constructs a cost function by extending the real-valued whiten cost function to a complex-valued domain and optim...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2016-01-01
|
Series: | Journal of Electrical and Computer Engineering |
Online Access: | http://dx.doi.org/10.1155/2016/2467198 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper proposes a two-stage fast convergence adaptive complex-valued independent component analysis based on second-order statistics of complex-valued source signals. The first stage constructs a cost function by extending the real-valued whiten cost function to a complex-valued domain and optimizes the cost function using a complex-valued gradient. The second stage uses the restriction that the pseudocovariance matrix of the separated signal is a diagonal matrix to construct the cost function and the geodesic method is used to optimize the cost function. Compared with other adaptive complex-valued independent component analysis, the proposed method shows a faster convergence rate and smaller error. Computer simulations were performed on synthesized signals and communications signals. The simulation results demonstrate the validity of the proposed algorithm. |
---|---|
ISSN: | 2090-0147 2090-0155 |