Tapered Fiber Coated with Hydroxyethyl Cellulose/Polyvinylidene Fluoride Composite for Relative Humidity Sensor
A simple relative humidity (RH) sensor is demonstrated using a tapered fiber coated with hydroxyethyl cellulose/polyvinylidene fluoride (HEC/PVDF) composite as a probe. This coating acts as an inner cladding whose refractive index decreases with the rise in humidity and thus allows more light to be...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2013-01-01
|
Series: | Advances in Materials Science and Engineering |
Online Access: | http://dx.doi.org/10.1155/2013/624314 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A simple relative humidity (RH) sensor is demonstrated using a tapered fiber coated with hydroxyethyl cellulose/polyvinylidene fluoride (HEC/PVDF) composite as a probe. This coating acts as an inner cladding whose refractive index decreases with the rise in humidity and thus allows more light to be transmitted in humid state. A difference of up to 0.89 dB of the transmitted optical power is observed when RH changes from 50% to 80% in case of the silica fiber probe. The proposed sensor has a sensitivity of about 0.0228 dB/%RH with a slope linearity of more than 99.91%. In case of the plastic optical fiber (POF) probe, the output voltage of the sensor increases linearly with a sensitivity of 0.0231 mV/%RH and a linearity of more than 99.65% as the relative humidity increases from 55% to 80%. |
---|---|
ISSN: | 1687-8434 1687-8442 |