Design of a Cost-Effective Ultrasound Force Sensor and Force Control System for Robotic Extra-Body Ultrasound Imaging

Ultrasound imaging is widely valued for its safety, non-invasiveness, and real-time capabilities but is often limited by operator variability, affecting image quality and reproducibility. Robot-assisted ultrasound may provide a solution by delivering more consistent, precise, and faster scans, poten...

Full description

Saved in:
Bibliographic Details
Main Authors: Yixuan Zheng, Hongyuan Ning, Eason Rangarajan, Aban Merali, Adam Geale, Lukas Lindenroth, Zhouyang Xu, Weizhao Wang, Philipp Kruse, Steven Morris, Liang Ye, Xinyi Fu, Kawal Rhode, Richard James Housden
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/2/468
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ultrasound imaging is widely valued for its safety, non-invasiveness, and real-time capabilities but is often limited by operator variability, affecting image quality and reproducibility. Robot-assisted ultrasound may provide a solution by delivering more consistent, precise, and faster scans, potentially reducing human error and healthcare costs. Effective force control is crucial in robotic ultrasound scanning to ensure consistent image quality and patient safety. However, existing robotic ultrasound systems rely heavily on expensive commercial force sensors or the integrated sensors of commercial robotic arms, limiting their accessibility. To address these challenges, we developed a cost-effective, lightweight, 3D-printed force sensor and a hybrid position–force control strategy tailored for robotic ultrasound scanning. The system integrates patient-to-robot registration, automated scanning path planning, and multi-sensor data fusion, allowing the robot to autonomously locate the patient, target the region of interest, and maintain optimal contact force during scanning. Validation was conducted using an ultrasound-compatible abdominal aortic aneurysm (AAA) phantom created from patient CT data and healthy volunteer testing. For the volunteer testing, during a 1-min scan, 65% of the forces were within the good image range. Both volunteers reported no discomfort or pain during the whole procedure. These results demonstrate the potential of the system to provide safe, precise, and autonomous robotic ultrasound imaging in real-world conditions.
ISSN:1424-8220