Autonomous Landing Guidance for Quad-UAVs Based on Visual Image and Altitude Estimation

In this paper, an autonomous landing guidance strategy is proposed for quad-UAVs, including landing marker detection, altitude estimation, and adaptive landing commands generation. A double-layered nested marker is designed to ensure that the marker can be captured both in high and low altitudes. A...

Full description

Saved in:
Bibliographic Details
Main Authors: Lingxia Mu, Shaowei Cao, Youmin Zhang, Xielong Zhang, Nan Feng, Yuan Zhang
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Drones
Subjects:
Online Access:https://www.mdpi.com/2504-446X/9/1/57
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, an autonomous landing guidance strategy is proposed for quad-UAVs, including landing marker detection, altitude estimation, and adaptive landing commands generation. A double-layered nested marker is designed to ensure that the marker can be captured both in high and low altitudes. A deep learning-based marker detection method is designed where the intersection of union is replaced by the normalized Wasserstein distance in the computation of non-maximum suppression to improve the detection accuracy. The UAV altitude measured by inertial measurement unit is fused with vision-based altitude estimation data to improve the accuracy during the landing process. An image-based visual servoing method is designed to guide the UAV approach to the landing marker. Both simulation and flight experiments are conducted to verify the proposed strategy.
ISSN:2504-446X