The Unique Periodic Solution of Abel’s Differential Equation
In this paper, the existence of a periodic solution for Abel’s differential equation is obtained first by using the fixed-point theorem. Then, by constructing the Lyapunov function, the uniqueness and stability of the periodic solution of the equation are obtained.
Saved in:
Main Author: | Ni Hua |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2020-01-01
|
Series: | Journal of Mathematics |
Online Access: | http://dx.doi.org/10.1155/2020/9814829 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Almost periodic solutions for Abel equations
by: Zeng Weiyao, et al.
Published: (1997-01-01) -
On Solution Representation of Generalized Abel Integral Equation
by: Arsen Pskhu
Published: (2013-01-01) -
On the Derivation of a Closed-Form Expression for the Solutions of a Subclass of Generalized Abel Differential Equations
by: Panayotis E. Nastou, et al.
Published: (2013-01-01) -
The Fixed Point Theory and the Existence of the Periodic Solution on a Nonlinear Differential Equation
by: Ni Hua
Published: (2018-01-01) -
Existence and Uniqueness of Periodic Solutions for a Kind of Second-Order Neutral Functional Differential Equation with Delays
by: Na Wang
Published: (2017-01-01)