Quantum Probes of Timelike Naked Singularities in 2+1-Dimensional Power-Law Spacetimes

The formation of naked singularities in 2+1-dimensional power-law spacetimes in linear Einstein-Maxwell and Einstein-scalar theories sourced by azimuthally symmetric electric field and a self-interacting real scalar field, respectively, are considered in view of quantum mechanics. Quantum test field...

Full description

Saved in:
Bibliographic Details
Main Authors: O. Gurtug, M. Halilsoy, S. Habib Mazharimousavi
Format: Article
Language:English
Published: Wiley 2015-01-01
Series:Advances in High Energy Physics
Online Access:http://dx.doi.org/10.1155/2015/684731
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The formation of naked singularities in 2+1-dimensional power-law spacetimes in linear Einstein-Maxwell and Einstein-scalar theories sourced by azimuthally symmetric electric field and a self-interacting real scalar field, respectively, are considered in view of quantum mechanics. Quantum test fields obeying the Klein-Gordon and Dirac equations are used to probe the classical timelike naked singularities developed at r=0. We show that when the classically singular spacetimes probed with scalar waves, the considered spacetimes remain singular. However, the spinorial wave probe of the singularity in the metric of a self-interacting real scalar field remains quantum regular. The notable outcome in this study is that the quantum regularity/singularity cannot be associated with the energy conditions.
ISSN:1687-7357
1687-7365