Fully decoupled SAV Fourier-spectral scheme for the Cahn–Hilliard–Hele–Shaw system
In this paper, we construct first- and second-order fully discrete schemes for the Cahn–Hilliard–Hele–Shaw system based on the Fourier-spectral method for spatial discretization. For temporal discretization, we combine two efficient approaches, including the scalar auxiliary variable (SAV) method fo...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-02-01
|
| Series: | Results in Applied Mathematics |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2590037424001043 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we construct first- and second-order fully discrete schemes for the Cahn–Hilliard–Hele–Shaw system based on the Fourier-spectral method for spatial discretization. For temporal discretization, we combine two efficient approaches, including the scalar auxiliary variable (SAV) method for linearizing nonlinear potentials and the zero-energy-contribution method (ZEC) for decoupling nonlinear couplings. These schemes are linear, fully decoupled, and unconditionally energy stable, requiring only the solution of a sequence of elliptic equations with constant coefficients at each time step. The rigorous proof of the error analysis for the first-order scheme is shown. In addition, several numerical examples are presented to demonstrate the stability, accuracy, and efficiency of the proposed scheme. |
|---|---|
| ISSN: | 2590-0374 |