Effect of Water-Cement Ratio on Pore Structure and Strength of Foam Concrete
Foam concrete with different dry densities (400, 500, 600, 700, and 800 kg/m3) was prepared from ordinary Portland cement (P.O.42.5R) and vegetable protein foaming agent by adjusting the water-cement ratio through the physical foaming method. The performance of the cement paste adopted, as well as t...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2016-01-01
|
Series: | Advances in Materials Science and Engineering |
Online Access: | http://dx.doi.org/10.1155/2016/9520294 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Foam concrete with different dry densities (400, 500, 600, 700, and 800 kg/m3) was prepared from ordinary Portland cement (P.O.42.5R) and vegetable protein foaming agent by adjusting the water-cement ratio through the physical foaming method. The performance of the cement paste adopted, as well as the structure and distribution of air pores, was characterized by a rheometer, scanning electron microscope, vacuum water saturation instrument, and image analysis software. Effects of the water-cement ratio on the relative viscosity of the cement paste, as well as pore structure and strength of the hardened foam concrete, were discussed. Results showed that water-cement ratio can influence the size, distribution, and connectivity of pores in foam concrete. The compressive strength of the foam concrete showed an inverted V-shaped variation law with the increase in water-cement ratio. |
---|---|
ISSN: | 1687-8434 1687-8442 |