Characterization of Ricci Solitons and Harmonic Vector Fields on the Lie Group <i>Nil</i><sup>4</sup>
This study considers a left-invariant Riemannian metric <i>g</i> on the Lie group <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mi>i</mi><msup><mi&...
Saved in:
| Main Authors: | Yanlin Li, Ahmed Mohammed Cherif, Yuquan Xie |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/13/7/1155 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Extrinsic Geometry of a Riemannian Manifold and Ricci Solitons
by: Ibrahim Al-Dayel, et al.
Published: (2025-01-01) -
Generalized $ * $-Ricci soliton on Kenmotsu manifolds
by: Yanlin Li, et al.
Published: (2025-03-01) -
Almost Ricci–Yamabe soliton on contact metric manifolds
by: Mohan Khatri, et al.
Published: (2025-01-01) -
A Conformal <i>η</i>-Ricci Soliton on a Four-Dimensional Lorentzian Para-Sasakian Manifold
by: Yanlin Li, et al.
Published: (2024-10-01) -
Geometric and Structural Properties of Indefinite Kenmotsu Manifolds Admitting Eta-Ricci–Bourguignon Solitons
by: Md Aquib, et al.
Published: (2025-06-01)