Millimeter-Wave All-Digital Phase-Locked Loop Using Reference Waveform Oversampling Techniques

This article proposes an mm-wave fractional-N all-digital phase-locked loop (ADPLL) employing a reference-waveform oversampling (ROS) phase detector (PD) that increases its effective rate four times, consequently improving jitter at lower power consumption while using a low-frequency reference of 50...

Full description

Saved in:
Bibliographic Details
Main Authors: Teerachot Siriburanon, Chunxiao Liu, Jianglin Du, Robert Bogdan Staszewski
Format: Article
Language:English
Published: IEEE 2024-01-01
Series:IEEE Open Journal of the Solid-State Circuits Society
Subjects:
Online Access:https://ieeexplore.ieee.org/document/10746550/
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832586850844278784
author Teerachot Siriburanon
Chunxiao Liu
Jianglin Du
Robert Bogdan Staszewski
author_facet Teerachot Siriburanon
Chunxiao Liu
Jianglin Du
Robert Bogdan Staszewski
author_sort Teerachot Siriburanon
collection DOAJ
description This article proposes an mm-wave fractional-N all-digital phase-locked loop (ADPLL) employing a reference-waveform oversampling (ROS) phase detector (PD) that increases its effective rate four times, consequently improving jitter at lower power consumption while using a low-frequency reference of 50 MHz. The passive oversampling PD utilizes a zero-forcing technique for voltage-domain presetting and compensation for both the fractional phase and reference spurs induced by imperfections in the reference waveform and reference-waveform oversampling PD (ROS-PD). The ROS-PD eliminates the conventional power-hungry low-noise buffer for the reference input and reduces the PD noise by increasing the loop correction speed. This promotes low jitter and high efficiency in advanced mm-wave PLLs without relying on the increase of the reference clock frequency to several hundred MHz. The imperfections in the reference waveform and ROS-PD, i.e., harmonic distortion, differential path mismatches, and other nonideality factors, can be programmably compensated by the proposed digital manifold calibration scheme, resulting in low reference spurs. A class-F3 oscillator is used to generate a ~10-GHz signal for the feedback divider along with its third harmonic for the harmonic extractor to generate the ~30-GHz output. The proposed ADPLL is implemented in TSMC 28-nm LP CMOS. The prototype generates a 24&#x2013;31-GHz output carrier with rms jitter of 237 fs while consuming only 12 mW. This corresponds to a state-of-the-art ADPLL <inline-formula> <tex-math notation="LaTeX">${\mathrm {FoM}}_{\text {jitter-N}}$ </tex-math></inline-formula> of &#x2212;269 dB in a fractional-N mode. Using a comprehensive digital calibration, the reference spurious tones can be reduced from &#x2212;33 to &#x2212;65 dBc.
format Article
id doaj-art-3e9b751d67cb48dc97fdfa60220d5cb9
institution Kabale University
issn 2644-1349
language English
publishDate 2024-01-01
publisher IEEE
record_format Article
series IEEE Open Journal of the Solid-State Circuits Society
spelling doaj-art-3e9b751d67cb48dc97fdfa60220d5cb92025-01-25T00:03:21ZengIEEEIEEE Open Journal of the Solid-State Circuits Society2644-13492024-01-01421222510.1109/OJSSCS.2024.349380310746550Millimeter-Wave All-Digital Phase-Locked Loop Using Reference Waveform Oversampling TechniquesTeerachot Siriburanon0https://orcid.org/0000-0003-1658-9596Chunxiao Liu1https://orcid.org/0009-0003-2803-7104Jianglin Du2Robert Bogdan Staszewski3https://orcid.org/0000-0001-9848-1129School of Electrical and Electronic Engineering, University College Dublin, Dublin 4, IrelandSchool of Electrical and Electronic Engineering, University College Dublin, Dublin 4, IrelandSchool of Electrical and Electronic Engineering, University College Dublin, Dublin 4, IrelandSchool of Electrical and Electronic Engineering, University College Dublin, Dublin 4, IrelandThis article proposes an mm-wave fractional-N all-digital phase-locked loop (ADPLL) employing a reference-waveform oversampling (ROS) phase detector (PD) that increases its effective rate four times, consequently improving jitter at lower power consumption while using a low-frequency reference of 50 MHz. The passive oversampling PD utilizes a zero-forcing technique for voltage-domain presetting and compensation for both the fractional phase and reference spurs induced by imperfections in the reference waveform and reference-waveform oversampling PD (ROS-PD). The ROS-PD eliminates the conventional power-hungry low-noise buffer for the reference input and reduces the PD noise by increasing the loop correction speed. This promotes low jitter and high efficiency in advanced mm-wave PLLs without relying on the increase of the reference clock frequency to several hundred MHz. The imperfections in the reference waveform and ROS-PD, i.e., harmonic distortion, differential path mismatches, and other nonideality factors, can be programmably compensated by the proposed digital manifold calibration scheme, resulting in low reference spurs. A class-F3 oscillator is used to generate a ~10-GHz signal for the feedback divider along with its third harmonic for the harmonic extractor to generate the ~30-GHz output. The proposed ADPLL is implemented in TSMC 28-nm LP CMOS. The prototype generates a 24&#x2013;31-GHz output carrier with rms jitter of 237 fs while consuming only 12 mW. This corresponds to a state-of-the-art ADPLL <inline-formula> <tex-math notation="LaTeX">${\mathrm {FoM}}_{\text {jitter-N}}$ </tex-math></inline-formula> of &#x2212;269 dB in a fractional-N mode. Using a comprehensive digital calibration, the reference spurious tones can be reduced from &#x2212;33 to &#x2212;65 dBc.https://ieeexplore.ieee.org/document/10746550/All-digital phase-locked loop (ADPLL)fractional-Nlow jitterlow powermillimeter-wave (mmW)reference-sampling PLL (RS-PLL)
spellingShingle Teerachot Siriburanon
Chunxiao Liu
Jianglin Du
Robert Bogdan Staszewski
Millimeter-Wave All-Digital Phase-Locked Loop Using Reference Waveform Oversampling Techniques
IEEE Open Journal of the Solid-State Circuits Society
All-digital phase-locked loop (ADPLL)
fractional-N
low jitter
low power
millimeter-wave (mmW)
reference-sampling PLL (RS-PLL)
title Millimeter-Wave All-Digital Phase-Locked Loop Using Reference Waveform Oversampling Techniques
title_full Millimeter-Wave All-Digital Phase-Locked Loop Using Reference Waveform Oversampling Techniques
title_fullStr Millimeter-Wave All-Digital Phase-Locked Loop Using Reference Waveform Oversampling Techniques
title_full_unstemmed Millimeter-Wave All-Digital Phase-Locked Loop Using Reference Waveform Oversampling Techniques
title_short Millimeter-Wave All-Digital Phase-Locked Loop Using Reference Waveform Oversampling Techniques
title_sort millimeter wave all digital phase locked loop using reference waveform oversampling techniques
topic All-digital phase-locked loop (ADPLL)
fractional-N
low jitter
low power
millimeter-wave (mmW)
reference-sampling PLL (RS-PLL)
url https://ieeexplore.ieee.org/document/10746550/
work_keys_str_mv AT teerachotsiriburanon millimeterwavealldigitalphaselockedloopusingreferencewaveformoversamplingtechniques
AT chunxiaoliu millimeterwavealldigitalphaselockedloopusingreferencewaveformoversamplingtechniques
AT jianglindu millimeterwavealldigitalphaselockedloopusingreferencewaveformoversamplingtechniques
AT robertbogdanstaszewski millimeterwavealldigitalphaselockedloopusingreferencewaveformoversamplingtechniques