Comparing Correlation-Based Feature Selection and Symmetrical Uncertainty for Student Dropout Prediction
Predicting student dropout is essential for universities dealing with high attrition rates. This study compares two feature selection (FS) methods—correlation-based feature selection (CFS) and symmetrical uncertainty (SU)—in educational data mining for dropout prediction. We evaluate these methods u...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Ikatan Ahli Informatika Indonesia
2024-08-01
|
Series: | Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) |
Subjects: | |
Online Access: | https://jurnal.iaii.or.id/index.php/RESTI/article/view/5911 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|