Demand-Driven Resilient Control for Generation Unit of Local Power Plant Under Unreliable Communication

The resilient control issue for the generation unit (GU) in a local power plant with unreliable communication is addressed in this article, where the communication may be jammed by denial-of-service (DoS) attacks. Based on the GU model of voltage and current at the point of common coupling, a demand...

Full description

Saved in:
Bibliographic Details
Main Authors: Guizhou Cao, Dawei Xia, Bokang Liu, Kai Meng, Zhenlong Wu, Yuan-Cheng Sun
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/18/2/300
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The resilient control issue for the generation unit (GU) in a local power plant with unreliable communication is addressed in this article, where the communication may be jammed by denial-of-service (DoS) attacks. Based on the GU model of voltage and current at the point of common coupling, a demand-driven network communication protocol is proposed to decrease the number of scheduling signal transmissions, and an observer-based prediction method is provided to replenish the lack of dispatching data during transmission intervals when the demand has not changed. The closed-loop performance is analyzed for the GU system in the input-to-state stable framework with or without attack. According to the DoS attack model, which is described by the assumptions of frequency and duration, the conservativeness of the tolerable DoS attack index is reduced by using the thought of robustness to the maximum disturbance-induced error. Simulation examples are provided to verify the effectiveness of the approach proposed in this article.
ISSN:1996-1073