Schrödinger–Hardy system without the Ambrosetti–Rabinowitz condition on Carnot groups
In this paper, we study the following Schrödinger–Hardy system \begin{equation*} \begin{cases} -\Delta_{\mathbb{G}}u-\mu\frac{\psi^2}{r(\xi)^2}u=F_u(\xi,u,v)\ &{\rm in}\ \Omega, \\ -\Delta_{\mathbb{G}}v-\nu\frac{\psi^2 }{r(\xi)^2}v=F_v(\xi,u,v)\ &{\rm in}\ \Omega, \\ u=v=0 \ \ &a...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2024-06-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Subjects: | |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=10660 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|