On Algebraic Approach in Quadratic Systems

When considering friction or resistance, many physical processes are mathematically simulated by quadratic systems of ODEs or discrete quadratic dynamical systems. Probably the most important problem when such systems are applied in engineering is the stability of critical points and (non)chaotic dy...

Full description

Saved in:
Bibliographic Details
Main Author: Matej Mencinger
Format: Article
Language:English
Published: Wiley 2011-01-01
Series:International Journal of Mathematics and Mathematical Sciences
Online Access:http://dx.doi.org/10.1155/2011/230939
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:When considering friction or resistance, many physical processes are mathematically simulated by quadratic systems of ODEs or discrete quadratic dynamical systems. Probably the most important problem when such systems are applied in engineering is the stability of critical points and (non)chaotic dynamics. In this paper we consider homogeneous quadratic systems via the so-called Markus approach. We use the one-to-one correspondence between homogeneous quadratic dynamical systems and algebra which was originally introduced by Markus in (1960). We resume some connections between the dynamics of the quadratic systems and (algebraic) properties of the corresponding algebras. We consider some general connections and the influence of power-associativity in the corresponding quadratic system.
ISSN:0161-1712
1687-0425