Neuro-fuzzy techniques for modeling process parameters in pulsed electrochemical machining of steel

Pulsed Electrochemical Machining (PECM) is an advanced manufacturing method used in the metalworking industry to manufacture metal tools or components utilizing the principle of electrolysis. As a result, chemical and electrical phenomena of different natures are involved, making it difficult to de...

Full description

Saved in:
Bibliographic Details
Main Authors: Irvin Uriel Nopalera Angeles, Everardo Efrén Granda Gutiérrez, Roberto Alejo Eleuterio, René Arnulfo García Hernández, Ángel Hernández Castañeda, María Guadalupe Pineda Arizmendi
Format: Article
Language:English
Published: Universidad De La Salle Bajío 2025-07-01
Series:Nova Scientia
Subjects:
Online Access:https://novascientia.lasallebajio.edu.mx/ojs/index.php/novascientia/article/view/3629
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849413254601768960
author Irvin Uriel Nopalera Angeles
Everardo Efrén Granda Gutiérrez
Roberto Alejo Eleuterio
René Arnulfo García Hernández
Ángel Hernández Castañeda
María Guadalupe Pineda Arizmendi
author_facet Irvin Uriel Nopalera Angeles
Everardo Efrén Granda Gutiérrez
Roberto Alejo Eleuterio
René Arnulfo García Hernández
Ángel Hernández Castañeda
María Guadalupe Pineda Arizmendi
author_sort Irvin Uriel Nopalera Angeles
collection DOAJ
description Pulsed Electrochemical Machining (PECM) is an advanced manufacturing method used in the metalworking industry to manufacture metal tools or components utilizing the principle of electrolysis. As a result, chemical and electrical phenomena of different natures are involved, making it difficult to describe the behavior that governs material wear accurately. An approach known as ANFIS (Adaptive Neuro Fuzzy Inference System) was employed to address this issue, integrating two artificial intelligence techniques: artificial neural networks and fuzzy logic. This algorithm performs inference-based mapping using fuzzy logic while adaptively adjusting parameters through a supervised criterion, as in neural networks. For this purpose, experimental data from electrochemical machining divided into subsets were used to train and test the model. In this way, a root mean square error in the prediction of the material removal rate of 0.394 and a coefficient of determination  of 0.845 were obtained. Finally, the analysis of the residuals allowed to exclude the presence of heteroscedasticity, confirming an adequate predictive performance without bias and with constant variance according to the Breusch-Pagan statistical test criterion
format Article
id doaj-art-39a8994f1f2d40adbb9d62b8a80b25c1
institution Kabale University
issn 2007-0705
language English
publishDate 2025-07-01
publisher Universidad De La Salle Bajío
record_format Article
series Nova Scientia
spelling doaj-art-39a8994f1f2d40adbb9d62b8a80b25c12025-08-20T03:34:10ZengUniversidad De La Salle BajíoNova Scientia2007-07052025-07-01173410.21640/ns.v17i34.3629Neuro-fuzzy techniques for modeling process parameters in pulsed electrochemical machining of steelIrvin Uriel Nopalera Angeles0Everardo Efrén Granda Gutiérrez1https://orcid.org/0000-0002-9316-9627Roberto Alejo Eleuterio2https://orcid.org/0000-0002-7580-3305René Arnulfo García Hernández3https://orcid.org/0000-0001-7941-377XÁngel Hernández Castañeda4https://orcid.org/0000-0002-2811-0813María Guadalupe Pineda Arizmendi5https://orcid.org/0000-0001-8267-9800Universidad Autónoma del Estado de MéxicoUniversidad Autónoma del Estado de México Tecnológico Nacional de México Universidad Autónoma del Estado de México Universidad Autónoma del Estado de México Tecnológico Nacional de México Pulsed Electrochemical Machining (PECM) is an advanced manufacturing method used in the metalworking industry to manufacture metal tools or components utilizing the principle of electrolysis. As a result, chemical and electrical phenomena of different natures are involved, making it difficult to describe the behavior that governs material wear accurately. An approach known as ANFIS (Adaptive Neuro Fuzzy Inference System) was employed to address this issue, integrating two artificial intelligence techniques: artificial neural networks and fuzzy logic. This algorithm performs inference-based mapping using fuzzy logic while adaptively adjusting parameters through a supervised criterion, as in neural networks. For this purpose, experimental data from electrochemical machining divided into subsets were used to train and test the model. In this way, a root mean square error in the prediction of the material removal rate of 0.394 and a coefficient of determination  of 0.845 were obtained. Finally, the analysis of the residuals allowed to exclude the presence of heteroscedasticity, confirming an adequate predictive performance without bias and with constant variance according to the Breusch-Pagan statistical test criterion https://novascientia.lasallebajio.edu.mx/ojs/index.php/novascientia/article/view/3629Neuro-fuzzyelectrochemical machiningmaterial removal ratemodeling
spellingShingle Irvin Uriel Nopalera Angeles
Everardo Efrén Granda Gutiérrez
Roberto Alejo Eleuterio
René Arnulfo García Hernández
Ángel Hernández Castañeda
María Guadalupe Pineda Arizmendi
Neuro-fuzzy techniques for modeling process parameters in pulsed electrochemical machining of steel
Nova Scientia
Neuro-fuzzy
electrochemical machining
material removal rate
modeling
title Neuro-fuzzy techniques for modeling process parameters in pulsed electrochemical machining of steel
title_full Neuro-fuzzy techniques for modeling process parameters in pulsed electrochemical machining of steel
title_fullStr Neuro-fuzzy techniques for modeling process parameters in pulsed electrochemical machining of steel
title_full_unstemmed Neuro-fuzzy techniques for modeling process parameters in pulsed electrochemical machining of steel
title_short Neuro-fuzzy techniques for modeling process parameters in pulsed electrochemical machining of steel
title_sort neuro fuzzy techniques for modeling process parameters in pulsed electrochemical machining of steel
topic Neuro-fuzzy
electrochemical machining
material removal rate
modeling
url https://novascientia.lasallebajio.edu.mx/ojs/index.php/novascientia/article/view/3629
work_keys_str_mv AT irvinurielnopaleraangeles neurofuzzytechniquesformodelingprocessparametersinpulsedelectrochemicalmachiningofsteel
AT everardoefrengrandagutierrez neurofuzzytechniquesformodelingprocessparametersinpulsedelectrochemicalmachiningofsteel
AT robertoalejoeleuterio neurofuzzytechniquesformodelingprocessparametersinpulsedelectrochemicalmachiningofsteel
AT renearnulfogarciahernandez neurofuzzytechniquesformodelingprocessparametersinpulsedelectrochemicalmachiningofsteel
AT angelhernandezcastaneda neurofuzzytechniquesformodelingprocessparametersinpulsedelectrochemicalmachiningofsteel
AT mariaguadalupepinedaarizmendi neurofuzzytechniquesformodelingprocessparametersinpulsedelectrochemicalmachiningofsteel