Scalable Production of Recombinant Adeno-Associated Virus Vectors Expressing Soluble Viral Receptors for Broad-Spectrum Inhibition of Porcine Reproductive and Respiratory Syndrome Virus Type 2
Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a major threat to the global swine industry, causing significant economic losses. To address this, we developed a scalable recombinant adeno-associated virus (rAAV)-based strategy for the delivery of soluble viral receptors...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-04-01
|
| Series: | Veterinary Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2306-7381/12/4/366 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Porcine reproductive and respiratory syndrome virus (PRRSV) continues to be a major threat to the global swine industry, causing significant economic losses. To address this, we developed a scalable recombinant adeno-associated virus (rAAV)-based strategy for the delivery of soluble viral receptors (SVRs) to treat and potentially eliminate PRRSV infections. This strategy involves fusing the virus-binding domains of two key cellular receptors, sialoadhesin (Sn4D) and CD163 (SRCR5-9), with an Fc fragment. We then used an insect cell–baculovirus expression vector system to produce the rAAV-SRCR59-Fc/Sn4D-Fc vector. Through a series of optimizations, we determined the best conditions for rAAV production, including a baculovirus co-infection ratio of 0.5:1.0, an initial insect cell density of 2.0 × 10<sup>6</sup> cells/mL, a fetal bovine serum concentration of 2%, and a culture temperature of 30 °C. Under these optimized conditions, we achieved a high titer of rAAV-SRCR59-Fc/Sn4D-Fc in a 2 L bioreactor, reaching 5.4 ± 0.9 × 10<sup>9</sup> infectious viral particles (IVPs)/mL. Notably, in vitro neutralization assays using a Transwell co-culture system demonstrated a 4.3 log reduction in viral titers across genetically diverse PRRSV-2 strains, including VR2332, JXA1, JS07, and SH1705. Collectively, this study provides a robust platform for large-scale rAAV production and highlights the potential of SVR-based gene therapy to address the antigenic diversity of PRRSV-2. |
|---|---|
| ISSN: | 2306-7381 |