Schur-type inequality for solitonic hypersurfaces in $ (k, \mu) $-contact metric manifolds
In this article, we derive a Schur-type Inequality in terms of the gradient $ r $-Almost Newton-Ricci-Yamabe soliton in $ (k, \mu) $-contact metric manifolds. We discuss the triviality for the compact gradient $ r $-Almost Newton-Ricci-Yamabe soliton in $ (k, \mu) $-Contact metric manifolds. In the...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIMS Press
2024-12-01
|
Series: | AIMS Mathematics |
Subjects: | |
Online Access: | https://www.aimspress.com/article/doi/10.3934/math.20241711 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
_version_ | 1832590735178727424 |
---|---|
author | Mohd Danish Siddiqi Fatemah Mofarreh |
author_facet | Mohd Danish Siddiqi Fatemah Mofarreh |
author_sort | Mohd Danish Siddiqi |
collection | DOAJ |
description | In this article, we derive a Schur-type Inequality in terms of the gradient $ r $-Almost Newton-Ricci-Yamabe soliton in $ (k, \mu) $-contact metric manifolds. We discuss the triviality for the compact gradient $ r $-Almost Newton-Ricci-Yamabe soliton in $ (k, \mu) $-Contact metric manifolds. In the end, we deduce a Schur-type inequality for the gradient $ r $-Almost Newton-Yamabe soliton in $ (k, \mu) $-contact metric manifolds, static Riemannian manifolds, and normal homogeneous compact Riemannian manifolds coupled with a projected Casimir operator. |
format | Article |
id | doaj-art-360f8e6edfe9413fad3efaad1e9469cf |
institution | Kabale University |
issn | 2473-6988 |
language | English |
publishDate | 2024-12-01 |
publisher | AIMS Press |
record_format | Article |
series | AIMS Mathematics |
spelling | doaj-art-360f8e6edfe9413fad3efaad1e9469cf2025-01-23T07:53:25ZengAIMS PressAIMS Mathematics2473-69882024-12-01912360693608110.3934/math.20241711Schur-type inequality for solitonic hypersurfaces in $ (k, \mu) $-contact metric manifoldsMohd Danish Siddiqi0Fatemah Mofarreh1Department of Mathematics, College of Science, Jazan University, P.O. Box 277, Jazan 45142, Saudi ArabiaMathematical Science Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh 11546, Saudi ArabiaIn this article, we derive a Schur-type Inequality in terms of the gradient $ r $-Almost Newton-Ricci-Yamabe soliton in $ (k, \mu) $-contact metric manifolds. We discuss the triviality for the compact gradient $ r $-Almost Newton-Ricci-Yamabe soliton in $ (k, \mu) $-Contact metric manifolds. In the end, we deduce a Schur-type inequality for the gradient $ r $-Almost Newton-Yamabe soliton in $ (k, \mu) $-contact metric manifolds, static Riemannian manifolds, and normal homogeneous compact Riemannian manifolds coupled with a projected Casimir operator.https://www.aimspress.com/article/doi/10.3934/math.20241711$ (k, \mu) $-contact metric manifoldschur-type inequalityhypersurfacesgradient $ r $-almost newton-ricci-yamabe solitons |
spellingShingle | Mohd Danish Siddiqi Fatemah Mofarreh Schur-type inequality for solitonic hypersurfaces in $ (k, \mu) $-contact metric manifolds AIMS Mathematics $ (k, \mu) $-contact metric manifold schur-type inequality hypersurfaces gradient $ r $-almost newton-ricci-yamabe solitons |
title | Schur-type inequality for solitonic hypersurfaces in $ (k, \mu) $-contact metric manifolds |
title_full | Schur-type inequality for solitonic hypersurfaces in $ (k, \mu) $-contact metric manifolds |
title_fullStr | Schur-type inequality for solitonic hypersurfaces in $ (k, \mu) $-contact metric manifolds |
title_full_unstemmed | Schur-type inequality for solitonic hypersurfaces in $ (k, \mu) $-contact metric manifolds |
title_short | Schur-type inequality for solitonic hypersurfaces in $ (k, \mu) $-contact metric manifolds |
title_sort | schur type inequality for solitonic hypersurfaces in k mu contact metric manifolds |
topic | $ (k, \mu) $-contact metric manifold schur-type inequality hypersurfaces gradient $ r $-almost newton-ricci-yamabe solitons |
url | https://www.aimspress.com/article/doi/10.3934/math.20241711 |
work_keys_str_mv | AT mohddanishsiddiqi schurtypeinequalityforsolitonichypersurfacesinkmucontactmetricmanifolds AT fatemahmofarreh schurtypeinequalityforsolitonichypersurfacesinkmucontactmetricmanifolds |