Schur-type inequality for solitonic hypersurfaces in $ (k, \mu) $-contact metric manifolds

In this article, we derive a Schur-type Inequality in terms of the gradient $ r $-Almost Newton-Ricci-Yamabe soliton in $ (k, \mu) $-contact metric manifolds. We discuss the triviality for the compact gradient $ r $-Almost Newton-Ricci-Yamabe soliton in $ (k, \mu) $-Contact metric manifolds. In the...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohd Danish Siddiqi, Fatemah Mofarreh
Format: Article
Language:English
Published: AIMS Press 2024-12-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.20241711
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832590735178727424
author Mohd Danish Siddiqi
Fatemah Mofarreh
author_facet Mohd Danish Siddiqi
Fatemah Mofarreh
author_sort Mohd Danish Siddiqi
collection DOAJ
description In this article, we derive a Schur-type Inequality in terms of the gradient $ r $-Almost Newton-Ricci-Yamabe soliton in $ (k, \mu) $-contact metric manifolds. We discuss the triviality for the compact gradient $ r $-Almost Newton-Ricci-Yamabe soliton in $ (k, \mu) $-Contact metric manifolds. In the end, we deduce a Schur-type inequality for the gradient $ r $-Almost Newton-Yamabe soliton in $ (k, \mu) $-contact metric manifolds, static Riemannian manifolds, and normal homogeneous compact Riemannian manifolds coupled with a projected Casimir operator.
format Article
id doaj-art-360f8e6edfe9413fad3efaad1e9469cf
institution Kabale University
issn 2473-6988
language English
publishDate 2024-12-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj-art-360f8e6edfe9413fad3efaad1e9469cf2025-01-23T07:53:25ZengAIMS PressAIMS Mathematics2473-69882024-12-01912360693608110.3934/math.20241711Schur-type inequality for solitonic hypersurfaces in $ (k, \mu) $-contact metric manifoldsMohd Danish Siddiqi0Fatemah Mofarreh1Department of Mathematics, College of Science, Jazan University, P.O. Box 277, Jazan 45142, Saudi ArabiaMathematical Science Department, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh 11546, Saudi ArabiaIn this article, we derive a Schur-type Inequality in terms of the gradient $ r $-Almost Newton-Ricci-Yamabe soliton in $ (k, \mu) $-contact metric manifolds. We discuss the triviality for the compact gradient $ r $-Almost Newton-Ricci-Yamabe soliton in $ (k, \mu) $-Contact metric manifolds. In the end, we deduce a Schur-type inequality for the gradient $ r $-Almost Newton-Yamabe soliton in $ (k, \mu) $-contact metric manifolds, static Riemannian manifolds, and normal homogeneous compact Riemannian manifolds coupled with a projected Casimir operator.https://www.aimspress.com/article/doi/10.3934/math.20241711$ (k, \mu) $-contact metric manifoldschur-type inequalityhypersurfacesgradient $ r $-almost newton-ricci-yamabe solitons
spellingShingle Mohd Danish Siddiqi
Fatemah Mofarreh
Schur-type inequality for solitonic hypersurfaces in $ (k, \mu) $-contact metric manifolds
AIMS Mathematics
$ (k, \mu) $-contact metric manifold
schur-type inequality
hypersurfaces
gradient $ r $-almost newton-ricci-yamabe solitons
title Schur-type inequality for solitonic hypersurfaces in $ (k, \mu) $-contact metric manifolds
title_full Schur-type inequality for solitonic hypersurfaces in $ (k, \mu) $-contact metric manifolds
title_fullStr Schur-type inequality for solitonic hypersurfaces in $ (k, \mu) $-contact metric manifolds
title_full_unstemmed Schur-type inequality for solitonic hypersurfaces in $ (k, \mu) $-contact metric manifolds
title_short Schur-type inequality for solitonic hypersurfaces in $ (k, \mu) $-contact metric manifolds
title_sort schur type inequality for solitonic hypersurfaces in k mu contact metric manifolds
topic $ (k, \mu) $-contact metric manifold
schur-type inequality
hypersurfaces
gradient $ r $-almost newton-ricci-yamabe solitons
url https://www.aimspress.com/article/doi/10.3934/math.20241711
work_keys_str_mv AT mohddanishsiddiqi schurtypeinequalityforsolitonichypersurfacesinkmucontactmetricmanifolds
AT fatemahmofarreh schurtypeinequalityforsolitonichypersurfacesinkmucontactmetricmanifolds