Evaluation of CMIP5 Global Climate Models over the Volta Basin: Precipitation

A selected number of global climate models (GCMs) from the fifth Coupled Model Intercomparison Project (CMIP5) were evaluated over the Volta Basin for precipitation. Biases in models were computed by taking the differences between the averages over the period (1950–2004) of the models and the observ...

Full description

Saved in:
Bibliographic Details
Main Authors: Jacob Agyekum, Thompson Annor, Benjamin Lamptey, Emmannuel Quansah, Richard Yao Kuma Agyeman
Format: Article
Language:English
Published: Wiley 2018-01-01
Series:Advances in Meteorology
Online Access:http://dx.doi.org/10.1155/2018/4853681
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A selected number of global climate models (GCMs) from the fifth Coupled Model Intercomparison Project (CMIP5) were evaluated over the Volta Basin for precipitation. Biases in models were computed by taking the differences between the averages over the period (1950–2004) of the models and the observation, normalized by the average of the observed for the annual and seasonal timescales. The Community Earth System Model, version 1-Biogeochemistry (CESM1-BGC), the Community Climate System Model Version 4 (CCSM4), the Max Planck Institute Earth System Model, Medium Range (MPI-ESM-MR), the Norwegian Earth System Model (NorESM1-M), and the multimodel ensemble mean were able to simulate the observed climatological mean of the annual total precipitation well (average biases of 1.9% to 7.5%) and hence were selected for the seasonal and monthly timescales. Overall, all the models (CESM1-BGC, CCSM4, MPI-ESM-MR, and NorESM1-M) scored relatively low for correlation (<0.5) but simulated the observed temporal variability differently ranging from 1.0 to 3.0 for the seasonal total. For the annual cycle of the monthly total, the CESM1-BGC, the MPI-ESM-MR, and the NorESM1-M were able to simulate the peak of the observed rainy season well in the Soudano-Sahel, the Sahel, and the entire basin, respectively, while all the models had difficulty in simulating the bimodal pattern of the Guinea Coast. The ensemble mean shows high performance compared to the individual models in various timescales.
ISSN:1687-9309
1687-9317