Bootstrapping Nonparametric Prediction Intervals for Conditional Value-at-Risk with Heteroscedasticity
Using bootstrap method, we have constructed nonparametric prediction intervals for Conditional Value-at-Risk for returns that admit a heteroscedastic location-scale model where the location and scale functions are smooth, and the function of the error term is unknown and is assumed to be uncorrelate...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2019-01-01
|
Series: | Journal of Probability and Statistics |
Online Access: | http://dx.doi.org/10.1155/2019/7691841 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Using bootstrap method, we have constructed nonparametric prediction intervals for Conditional Value-at-Risk for returns that admit a heteroscedastic location-scale model where the location and scale functions are smooth, and the function of the error term is unknown and is assumed to be uncorrelated to the independent variable. The prediction interval performs well for large sample sizes and is relatively small, which is consistent with what is obtainable in the literature. |
---|---|
ISSN: | 1687-952X 1687-9538 |