Global Bifurcation in 2m-Order Generic Systems of Nonlinear Boundary Value Problems

We consider the systems of (-1)mu(2m)=λu+λv+uf(t,u,v),  t∈(0,1),  u(2i)(0)=u(2i)(1)=0, and 0≤i≤m-1,  (-1)mv(2m)=μu+μv+vg(t, u,v),  t∈(0,1),  v(2i)(0)=v(2i)(1)=0,  0≤i≤m-1, where λ,μ∈R are real parameters. f,g:[0,1]×R2→R are Ck,k≥3 functions and f(t,0,0)=g(t,0,0)=0,t∈[0,1]. It will be shown that if t...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoling Han, Jia Xu, Guowei Dai
Format: Article
Language:English
Published: Wiley 2012-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2012/804619
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832559751548895232
author Xiaoling Han
Jia Xu
Guowei Dai
author_facet Xiaoling Han
Jia Xu
Guowei Dai
author_sort Xiaoling Han
collection DOAJ
description We consider the systems of (-1)mu(2m)=λu+λv+uf(t,u,v),  t∈(0,1),  u(2i)(0)=u(2i)(1)=0, and 0≤i≤m-1,  (-1)mv(2m)=μu+μv+vg(t, u,v),  t∈(0,1),  v(2i)(0)=v(2i)(1)=0,  0≤i≤m-1, where λ,μ∈R are real parameters. f,g:[0,1]×R2→R are Ck,k≥3 functions and f(t,0,0)=g(t,0,0)=0,t∈[0,1]. It will be shown that if the functions, f and g are “generic” then the solution set of the systems consists of a countable collection of 2-dimensional, Ck manifolds.
format Article
id doaj-art-32ba318fd2054d718cfb9c3de9f49434
institution Kabale University
issn 1085-3375
1687-0409
language English
publishDate 2012-01-01
publisher Wiley
record_format Article
series Abstract and Applied Analysis
spelling doaj-art-32ba318fd2054d718cfb9c3de9f494342025-02-03T01:29:13ZengWileyAbstract and Applied Analysis1085-33751687-04092012-01-01201210.1155/2012/804619804619Global Bifurcation in 2m-Order Generic Systems of Nonlinear Boundary Value ProblemsXiaoling Han0Jia Xu1Guowei Dai2College of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu 730070, ChinaCollege of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu 730070, ChinaCollege of Mathematics and Statistics, Northwest Normal University, Lanzhou, Gansu 730070, ChinaWe consider the systems of (-1)mu(2m)=λu+λv+uf(t,u,v),  t∈(0,1),  u(2i)(0)=u(2i)(1)=0, and 0≤i≤m-1,  (-1)mv(2m)=μu+μv+vg(t, u,v),  t∈(0,1),  v(2i)(0)=v(2i)(1)=0,  0≤i≤m-1, where λ,μ∈R are real parameters. f,g:[0,1]×R2→R are Ck,k≥3 functions and f(t,0,0)=g(t,0,0)=0,t∈[0,1]. It will be shown that if the functions, f and g are “generic” then the solution set of the systems consists of a countable collection of 2-dimensional, Ck manifolds.http://dx.doi.org/10.1155/2012/804619
spellingShingle Xiaoling Han
Jia Xu
Guowei Dai
Global Bifurcation in 2m-Order Generic Systems of Nonlinear Boundary Value Problems
Abstract and Applied Analysis
title Global Bifurcation in 2m-Order Generic Systems of Nonlinear Boundary Value Problems
title_full Global Bifurcation in 2m-Order Generic Systems of Nonlinear Boundary Value Problems
title_fullStr Global Bifurcation in 2m-Order Generic Systems of Nonlinear Boundary Value Problems
title_full_unstemmed Global Bifurcation in 2m-Order Generic Systems of Nonlinear Boundary Value Problems
title_short Global Bifurcation in 2m-Order Generic Systems of Nonlinear Boundary Value Problems
title_sort global bifurcation in 2m order generic systems of nonlinear boundary value problems
url http://dx.doi.org/10.1155/2012/804619
work_keys_str_mv AT xiaolinghan globalbifurcationin2mordergenericsystemsofnonlinearboundaryvalueproblems
AT jiaxu globalbifurcationin2mordergenericsystemsofnonlinearboundaryvalueproblems
AT guoweidai globalbifurcationin2mordergenericsystemsofnonlinearboundaryvalueproblems