Global Bifurcation in 2m-Order Generic Systems of Nonlinear Boundary Value Problems
We consider the systems of (-1)mu(2m)=λu+λv+uf(t,u,v), t∈(0,1), u(2i)(0)=u(2i)(1)=0, and 0≤i≤m-1, (-1)mv(2m)=μu+μv+vg(t, u,v), t∈(0,1), v(2i)(0)=v(2i)(1)=0, 0≤i≤m-1, where λ,μ∈R are real parameters. f,g:[0,1]×R2→R are Ck,k≥3 functions and f(t,0,0)=g(t,0,0)=0,t∈[0,1]. It will be shown that if t...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2012-01-01
|
Series: | Abstract and Applied Analysis |
Online Access: | http://dx.doi.org/10.1155/2012/804619 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|