A Stepped Gate Oxide Structure for Suppressing Gate-Induced Drain Leakage in Fully Depleted Germanium-on-Insulator Multi-Subchannel Tunneling Field-Effect Transistors

To address the severe gate-induced drain leakage (GIDL) issue in fully depleted germanium-on-insulator (FD-GeOI) multi-subchannel tunneling field-effect transistors (MS TFETs), this paper proposes a stepped gate oxide (SGO) structure. In the off-state, the SGO structure effectively suppresses GIDL b...

Full description

Saved in:
Bibliographic Details
Main Authors: Rui Chen, Liming Wang, Ruizhe Han, Keqin Liao, Xinlong Shi, Peijian Zhang, Huiyong Hu
Format: Article
Language:English
Published: MDPI AG 2025-03-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/16/4/375
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To address the severe gate-induced drain leakage (GIDL) issue in fully depleted germanium-on-insulator (FD-GeOI) multi-subchannel tunneling field-effect transistors (MS TFETs), this paper proposes a stepped gate oxide (SGO) structure. In the off-state, the SGO structure effectively suppresses GIDL by reducing the electric field intensity at the channel/drain interface while simultaneously decreasing gate capacitance to reduce static power consumption. Based on an accurate device model, a systematic investigation was conducted into the effects of varying the thickness and length of the SGO structure on TFET performance, enabling the optimization of the SGO design. The simulation results demonstrate that, compared to normal MS TFETs, the SGO MS TFET reduces the off-state GIDL current (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>I</mi><mi>off</mi></msub></semantics></math></inline-formula>) from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow></semantics></math></inline-formula> A to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>11</mn></mrow></msup></mrow></semantics></math></inline-formula> A, achieving a maximum improvement of 4.22 orders of magnitude in the on-state-to-off-state current ratio (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>I</mi><mi>on</mi></msub><mo>/</mo><msub><mi>I</mi><mi>off</mi></msub></mrow></semantics></math></inline-formula>) and a 28% reduction in subthreshold swing (SS). Furthermore, compared to lightly doped drain (LDD) MS TFETs, the SGO MS TFET achieves a 32% reduction in total gate capacitance and a 23% enhancement in carrier mobility at the channel/drain interface. This study demonstrates that SGO provides an effective solution for GIDL suppression.
ISSN:2072-666X