A Stepped Gate Oxide Structure for Suppressing Gate-Induced Drain Leakage in Fully Depleted Germanium-on-Insulator Multi-Subchannel Tunneling Field-Effect Transistors
To address the severe gate-induced drain leakage (GIDL) issue in fully depleted germanium-on-insulator (FD-GeOI) multi-subchannel tunneling field-effect transistors (MS TFETs), this paper proposes a stepped gate oxide (SGO) structure. In the off-state, the SGO structure effectively suppresses GIDL b...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Micromachines |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2072-666X/16/4/375 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | To address the severe gate-induced drain leakage (GIDL) issue in fully depleted germanium-on-insulator (FD-GeOI) multi-subchannel tunneling field-effect transistors (MS TFETs), this paper proposes a stepped gate oxide (SGO) structure. In the off-state, the SGO structure effectively suppresses GIDL by reducing the electric field intensity at the channel/drain interface while simultaneously decreasing gate capacitance to reduce static power consumption. Based on an accurate device model, a systematic investigation was conducted into the effects of varying the thickness and length of the SGO structure on TFET performance, enabling the optimization of the SGO design. The simulation results demonstrate that, compared to normal MS TFETs, the SGO MS TFET reduces the off-state GIDL current (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>I</mi><mi>off</mi></msub></semantics></math></inline-formula>) from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>4.6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>7</mn></mrow></msup></mrow></semantics></math></inline-formula> A to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2.6</mn><mo>×</mo><msup><mn>10</mn><mrow><mo>−</mo><mn>11</mn></mrow></msup></mrow></semantics></math></inline-formula> A, achieving a maximum improvement of 4.22 orders of magnitude in the on-state-to-off-state current ratio (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>I</mi><mi>on</mi></msub><mo>/</mo><msub><mi>I</mi><mi>off</mi></msub></mrow></semantics></math></inline-formula>) and a 28% reduction in subthreshold swing (SS). Furthermore, compared to lightly doped drain (LDD) MS TFETs, the SGO MS TFET achieves a 32% reduction in total gate capacitance and a 23% enhancement in carrier mobility at the channel/drain interface. This study demonstrates that SGO provides an effective solution for GIDL suppression. |
|---|---|
| ISSN: | 2072-666X |