Penerapan Feature Engineering dan Hyperparameter Tuning untuk Meningkatkan Akurasi Model Random Forest pada Klasifikasi Risiko Kredit
Risiko kredit adalah hal yang penting untuk dianalisis di awal pengajuan kredit guna mengurangi nilai Non-Performing Loan (NPL) atau risiko gagal bayar. Pola pengetahuan risiko kredit bisa diketahui dari data-data historikal sehingga data pengajuan kredit baru bisa ketahui risikonya lebih awal....
Saved in:
| Main Authors: | Nadea Putri Nur Fauzi, Siti Khomsah, Aditya Dwi Putra Wicaksono |
|---|---|
| Format: | Article |
| Language: | Indonesian |
| Published: |
University of Brawijaya
2025-04-01
|
| Series: | Jurnal Teknologi Informasi dan Ilmu Komputer |
| Subjects: | |
| Online Access: | https://jtiik.ub.ac.id/index.php/jtiik/article/view/8472 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
Effects of Automatic Hyperparameter Tuning on the Performance of Multi‐Variate Deep Learning‐Based Rainfall Nowcasting
by: Amirmasoud Amini, et al.
Published: (2023-01-01) -
SKIN RASH CLASSIFICATION SYSTEM USING MODIFIED DENSENET201 THROUGH RANDOM SEARCH FOR HYPERPARAMETER TUNING
by: Fayza Nayla Riyana Putri, et al.
Published: (2024-12-01) -
Genetic Algorithms Applied to Optimize Neural Network Training in Reference Evapotranspiration Estimation
by: Eluã Ramos Coutinho, et al.
Published: (2025-04-01) -
Comparative Study on Hyperparameter Tuning for Predicting Concrete Compressive Strength
by: Jeonghyun Kim, et al.
Published: (2025-06-01) -
Optimizing Random Forest Parameters with Hyperparameter Tuning for Classifying School-Age KIP Eligibility in West Java
by: Silfiana Lis Setyowati, et al.
Published: (2025-02-01)