Digital twin technology in wind turbine components: A review

The industrial development, the advances in sensor technology and the processing of large amounts of data, have enabled the training and testing of artificial intelligence models that reproduce, with high accuracy, the behavior of some variables of interest. With the consolidation of the big data er...

Full description

Saved in:
Bibliographic Details
Main Authors: Jersson X. Leon-Medina, Diego A. Tibaduiza, Núria Parés, Francesc Pozo
Format: Article
Language:English
Published: Elsevier 2025-06-01
Series:Intelligent Systems with Applications
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2667305325000614
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850131994887847936
author Jersson X. Leon-Medina
Diego A. Tibaduiza
Núria Parés
Francesc Pozo
author_facet Jersson X. Leon-Medina
Diego A. Tibaduiza
Núria Parés
Francesc Pozo
author_sort Jersson X. Leon-Medina
collection DOAJ
description The industrial development, the advances in sensor technology and the processing of large amounts of data, have enabled the training and testing of artificial intelligence models that reproduce, with high accuracy, the behavior of some variables of interest. With the consolidation of the big data era and the proliferation of sensors that can acquire information directly from various components of a wind turbine (WT), a digital twin (DT) allows to close the gap between the physical and the digital worlds. It combines historical data, sensor readings, machine learning and physics-based modeling to replicate the behavior of the physical component accurately. This DT can simulate the performance and behavior of the physical object under different conditions and situations, allowing for predicting failures in WT components and determining their remaining useful life. This review describes the existing literature related to the use of DTs and their developments for WT applications and their components in onshore and offshore applications. This review explores various types of DTs and their approaches, aiming to cover different methods of data processing and concepts related to each DT framework. In addition, it identifies insights from various studies and reviews, particularly focusing on the components of WTs.
format Article
id doaj-art-2f1f00d83c2f4cdea8b6628c0ab5e68c
institution OA Journals
issn 2667-3053
language English
publishDate 2025-06-01
publisher Elsevier
record_format Article
series Intelligent Systems with Applications
spelling doaj-art-2f1f00d83c2f4cdea8b6628c0ab5e68c2025-08-20T02:32:19ZengElsevierIntelligent Systems with Applications2667-30532025-06-012620053510.1016/j.iswa.2025.200535Digital twin technology in wind turbine components: A reviewJersson X. Leon-Medina0Diego A. Tibaduiza1Núria Parés2Francesc Pozo3Control, Data and Artificial Intelligence (CoDAlab), Department of Mathematics, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs (CDB), Universitat Politècnica de Catalunya (UPC), Eduard Maristany 16, 08019 Barcelona, Spain; Grupo de Investigación en Energía y Nuevas Tecnologías—GENTE, Escuela de Ingeniería Electromecánica, Universidad Pedagógica y Tecnológica de Colombia, Facultad Seccional Duitama, Carrera 18 con Calle 22, Duitama 150461, Boyacá, ColombiaUniversidad Nacional de Colombia sede Bogotá, Departamento de Ingeniería Eléctrica y Electrónica, Av 45 carrera 30, Bogota, ColombiaLaboratori de Càlcul Numèric (LaCàN), Department of Mathematics, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs (CDB), Universitat Politècnica de Catalunya (UPC), Eduard Maristany 16, 08019 Barcelona, SpainControl, Data and Artificial Intelligence (CoDAlab), Department of Mathematics, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs (CDB), Universitat Politècnica de Catalunya (UPC), Eduard Maristany 16, 08019 Barcelona, Spain; Institute of Mathematics (IMTech), Universitat Politècnica de Catalunya (UPC), Pau Gargallo 14, 08028 Barcelona, Spain; Corresponding author at: Control, Data and Artificial Intelligence (CoDAlab), Department of Mathematics, Escola d’Enginyeria de Barcelona Est (EEBE), Campus Diagonal-Besòs (CDB), Universitat Politècnica de Catalunya (UPC), Eduard Maristany 16, 08019 Barcelona, Spain.The industrial development, the advances in sensor technology and the processing of large amounts of data, have enabled the training and testing of artificial intelligence models that reproduce, with high accuracy, the behavior of some variables of interest. With the consolidation of the big data era and the proliferation of sensors that can acquire information directly from various components of a wind turbine (WT), a digital twin (DT) allows to close the gap between the physical and the digital worlds. It combines historical data, sensor readings, machine learning and physics-based modeling to replicate the behavior of the physical component accurately. This DT can simulate the performance and behavior of the physical object under different conditions and situations, allowing for predicting failures in WT components and determining their remaining useful life. This review describes the existing literature related to the use of DTs and their developments for WT applications and their components in onshore and offshore applications. This review explores various types of DTs and their approaches, aiming to cover different methods of data processing and concepts related to each DT framework. In addition, it identifies insights from various studies and reviews, particularly focusing on the components of WTs.http://www.sciencedirect.com/science/article/pii/S2667305325000614digital twin (DT)wind turbine (WT)Remaining useful lifeMachine learningDeep learningCondition monitoring
spellingShingle Jersson X. Leon-Medina
Diego A. Tibaduiza
Núria Parés
Francesc Pozo
Digital twin technology in wind turbine components: A review
Intelligent Systems with Applications
digital twin (DT)
wind turbine (WT)
Remaining useful life
Machine learning
Deep learning
Condition monitoring
title Digital twin technology in wind turbine components: A review
title_full Digital twin technology in wind turbine components: A review
title_fullStr Digital twin technology in wind turbine components: A review
title_full_unstemmed Digital twin technology in wind turbine components: A review
title_short Digital twin technology in wind turbine components: A review
title_sort digital twin technology in wind turbine components a review
topic digital twin (DT)
wind turbine (WT)
Remaining useful life
Machine learning
Deep learning
Condition monitoring
url http://www.sciencedirect.com/science/article/pii/S2667305325000614
work_keys_str_mv AT jerssonxleonmedina digitaltwintechnologyinwindturbinecomponentsareview
AT diegoatibaduiza digitaltwintechnologyinwindturbinecomponentsareview
AT nuriapares digitaltwintechnologyinwindturbinecomponentsareview
AT francescpozo digitaltwintechnologyinwindturbinecomponentsareview