A Long Short-Term Memory–Wasserstein Generative Adversarial Network-Based Data Imputation Method for Photovoltaic Power Output Prediction
To address the challenges of the issue of inaccurate prediction results due to missing data in PV power records, a photovoltaic power data imputation method based on a Wasserstein Generative Adversarial Network (WGAN) and Long Short-Term Memory (LSTM) network is proposed. This method introduces a da...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Energies |
Subjects: | |
Online Access: | https://www.mdpi.com/1996-1073/18/2/399 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To address the challenges of the issue of inaccurate prediction results due to missing data in PV power records, a photovoltaic power data imputation method based on a Wasserstein Generative Adversarial Network (WGAN) and Long Short-Term Memory (LSTM) network is proposed. This method introduces a data-driven GAN framework with quasi-convex characteristics to ensure the smoothness of the imputed data with the existing data and employs a gradient penalty mechanism and a single-batch multi-iteration strategy for stable training. Finally, through frequency domain analysis, t-Distributed Stochastic Neighbor Embedding (t-SNE) metrics, and prediction performance validation of the generated data, the proposed method can improve the continuity and reliability of data in photovoltaic prediction tasks. |
---|---|
ISSN: | 1996-1073 |