Uncertainty quantification for neural network potential foundation models
Abstract For neural network potentials (NNPs) to gain widespread use, researchers must be able to trust model outputs. However, the blackbox nature of neural networks and their inherent stochasticity are often deterrents, especially for foundation models trained over broad swaths of chemical space....
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-04-01
|
| Series: | npj Computational Materials |
| Online Access: | https://doi.org/10.1038/s41524-025-01572-y |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|