Disentangling density and geometry in weather regime dimensions using stochastic twins
Abstract Large-scale atmospheric variability can be summarized by recurring patterns called weather regimes. Their properties, including predictability, have been studied using the local dimension, a geometrical estimate of degrees of freedom from multifractal theory. Local dimension estimates vary...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-05-01
|
| Series: | npj Climate and Atmospheric Science |
| Online Access: | https://doi.org/10.1038/s41612-025-01086-w |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract Large-scale atmospheric variability can be summarized by recurring patterns called weather regimes. Their properties, including predictability, have been studied using the local dimension, a geometrical estimate of degrees of freedom from multifractal theory. Local dimension estimates vary across regimes, decrease when a single regime dominates, and increase during transitions, supporting their dynamical significance. However, these variations stem not only from geometry but also from sampling density. We develop a null-hypothesis test using stochastic twins-Gaussian mixture-based surrogates matching atmospheric sampling density but with constant geometry-applied to ERA5 500 hPa fields. Density effects alone explain over 25% of local dimension variance and reproduce the dimension drop near regime peaks, indicating this behavior is density-driven, not geometric. The remaining variability is plausibly geometry-driven. This approach, applicable to any observed system with known sampling distribution, offers a new framework for interpreting local dimension estimates in atmospheric and oceanic data. |
|---|---|
| ISSN: | 2397-3722 |