A study of Media Polarization with Stylometry Methods

This research investigated the U.S. media polarization with stylometry approaches, creating classification models to identify the political leanings of news articles based on their writing style. We tested the models of authorship attribution, while controlling for topic, stance, and style, and appl...

Full description

Saved in:
Bibliographic Details
Main Authors: Yifei Hu, Julia Rayz
Format: Article
Language:English
Published: LibraryPress@UF 2021-04-01
Series:Proceedings of the International Florida Artificial Intelligence Research Society Conference
Subjects:
Online Access:https://journals.flvc.org/FLAIRS/article/view/128477
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This research investigated the U.S. media polarization with stylometry approaches, creating classification models to identify the political leanings of news articles based on their writing style. We tested the models of authorship attribution, while controlling for topic, stance, and style, and applied them to media companies and their identity within a political spectrum. We tested style features that could include semantic and/or sentiment-related information, such as stance taking, with features that seemingly do not capture it. We were able to successfully classify articles as left-leaning or right-learning regardless of stance. Finally, we provide an analysis of some of the patterns that we found.
ISSN:2334-0754
2334-0762