Role of the Molecular Mass on the Elastic Properties of Hybrid Carrageenan Hydrogels

A set of carrageenans produced in the potassium form and with chemical structures varying from pure iota-carrageenans to nearly pure kappa-carrageenans is submitted to ultrasonication to reduce their molecular masses Mw while maintaining a constant chemical structure and a polydispersity index aroun...

Full description

Saved in:
Bibliographic Details
Main Authors: Gabriela Gonçalves, Bruno Faria, Izabel Cristina Freitas Moraes, Loic Hilliou
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Gels
Subjects:
Online Access:https://www.mdpi.com/2310-2861/11/1/77
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A set of carrageenans produced in the potassium form and with chemical structures varying from pure iota-carrageenans to nearly pure kappa-carrageenans is submitted to ultrasonication to reduce their molecular masses Mw while maintaining a constant chemical structure and a polydispersity index around 2. The kinetics of ultrasound-induced chain scission are found to be slower for polysaccharides richer in kappa-carrageenan disaccharide units. From the elasticity of samples directly gelled in a rheometer at 1 <i>w</i>/<i>v</i>% in 0.1 M potassium chloride, a critical molecular mass Mc is identified as the mass below which no gel can be formed. Mc is found to be smaller for kappa- and kappa-2-carrageenans of the order of 0.13–0.21 MDa. The presence of more sulphated disaccharide units significantly increases Mc up to 0.28 MDa for iota-carrageenan and 0.57 MDa for a highly sulphated hybrid carrageenan. For the set of Mw and carrageenans tested, no plateau in the Mw dependence of the gels’ elasticities is found.
ISSN:2310-2861