Role of the Molecular Mass on the Elastic Properties of Hybrid Carrageenan Hydrogels
A set of carrageenans produced in the potassium form and with chemical structures varying from pure iota-carrageenans to nearly pure kappa-carrageenans is submitted to ultrasonication to reduce their molecular masses Mw while maintaining a constant chemical structure and a polydispersity index aroun...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2025-01-01
|
Series: | Gels |
Subjects: | |
Online Access: | https://www.mdpi.com/2310-2861/11/1/77 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A set of carrageenans produced in the potassium form and with chemical structures varying from pure iota-carrageenans to nearly pure kappa-carrageenans is submitted to ultrasonication to reduce their molecular masses Mw while maintaining a constant chemical structure and a polydispersity index around 2. The kinetics of ultrasound-induced chain scission are found to be slower for polysaccharides richer in kappa-carrageenan disaccharide units. From the elasticity of samples directly gelled in a rheometer at 1 <i>w</i>/<i>v</i>% in 0.1 M potassium chloride, a critical molecular mass Mc is identified as the mass below which no gel can be formed. Mc is found to be smaller for kappa- and kappa-2-carrageenans of the order of 0.13–0.21 MDa. The presence of more sulphated disaccharide units significantly increases Mc up to 0.28 MDa for iota-carrageenan and 0.57 MDa for a highly sulphated hybrid carrageenan. For the set of Mw and carrageenans tested, no plateau in the Mw dependence of the gels’ elasticities is found. |
---|---|
ISSN: | 2310-2861 |